Damping and Frequency Shift in Microscale Modified Couple Stress Thermoelastic Plate Resonators
Authors
Abstract:
In this paper, the vibrations of thin plate in modified couple stress thermoelastic medium by using Kirchhoff- Love plate theory has been investigated. The governing equations of motion and heat conduction equation for Lord Shulman (L-S) [1] theory are written with the help of Kirchhoff- Love plate theory. The thermoelastic damping of micro-beam resonators is analyzed by using the normal mode analysis. The solutions for the free vibrations of plates under clamped-simply supported (CS) and clamped-free (CF) conditions are obtained. The analytical expressions for thermoelastic damping of vibration and frequency shift are obtained for couple stress generalized thermoelastic and coupled thermoelastic plates. A computer algorithm has been constructed to obtain the numerical results. The thermoelastic damping and frequency shift with varying values of length and thickness are shown graphically in the absence and presence of couple stress for (i) clamped-simply supported, (ii) clamped-free boundary conditions. Some particular cases are also presented.
similar resources
Thermoelastic Damping and Frequency Shift in Kirchhoff Plate Resonators Based on Modified Couple Stress Theory With Dual-Phase-Lag Model
The present investigation deals with study of thermoelastic damping and frequency shift of Kirchhoff plate resonators by using generalized thermoelasticity theory of dual-phase-lag model. The basic equations of motion and heat conduction equation are written with the help of Kirchhoff-Love plate theory and dual phase lag model. The analytical expressions for thermoelastic damping and frequency ...
full textGeometric effects on thermoelastic damping in MEMS resonators
The effects of geometry on the energy dissipation induced by thermoelastic damping in MEMS resonators are investigated numerically using a finite element formulation. The perturbation analysis is applied to derive a linear eigenvalue equation for the exponentially decaying rate of the mechanical oscillation. The analysis also involves a Fourier method that reduces the dimensionality of the prob...
full textSuppression of thermoelastic damping in MEMS beam resonators by piezoresistivity
Microelectronic mechanical (MEM) beam resonators with high quality factors are always preferred in practical applications. As one of the damping sources, thermoelastic damping (TED) caused by irreversible heat flows is usually considered as an upper limit of the overall damping effect. A new method is proposed in this work to compensate TED by taking advantage of the piezoresistive effect. Such...
full textFinite Element Analysis of Thermoelastic Damping in Contour-Mode Vibrations of Micro- and Nanoscale Ring, Disk, and Elliptical Plate Resonators
Thermoelastic damping in contour-mode in-plane vibrations of rings, disks, and elliptical plates is investigated on various size scales, using a reduced finite element formulation. The Fourier scheme is applied to the axisymmetric geometries including circular rings and disks, and is found to be remarkably efficient in searching solutions. The numerical accuracy is further improved by the imple...
full textAxisymmetric Problem of Thick Circular Plate with Heat Sources in Modified Couple Stress Theory
The main aim is to study the two dimensional axisymmetric problem of thick circular plate in modified couple stress theory with heat and mass diffusive sources. The thermoelastic theories with mass diffusion developed by Sherief et al. [1] and kumar and Kansal [2] have been used to investigate the problem. Laplace and Hankel transforms technique is applied to obtain the solutions of the governi...
full textThermo-elastic Damping in a Capacitive Micro-beam Resonator Considering Hyperbolic Heat Conduction Model and Modified Couple Stress Theory
In this paper, the quality factor of thermo-elastic damping in an electro-statically deflected micro-beam resonator has been investigated. The thermo-elastic coupled equations for the deflected micro-beam have been derived using variational and Hamilton principles based on modified couple stress theory and hyperbolic heat conduction model. The thermo-elastic damping has been obtained discretizi...
full textMy Resources
Journal title
volume 10 issue 3
pages 621- 636
publication date 2018-09-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023